PS0solution
- (a)
$$
\nabla f(x) = Ax+b^T
$$
(b)
$$
\nabla f(x) = g^{‘}(h(x))\nabla h(x)
$$important
(c)
$$
\nabla^2 f(x) = A
$$
(d)
$$
\nabla f(x) = g^{‘}(a^Tx)a \
\nabla^2 f(x) = g^{‘’}(a^Tx)aa^T
$$
- (a)
$ A^T = (zz^T)^T = zz^T = A $
对于$\forall x \in R^n$
有$x^TAx = x^Tzz^Tx \
= (x^Tz)(x^Tz)^T$
因为x^Tz 正定
所以A正定
(b)
$\because$ z为非零向量
$\therefore R(A) = 1$
$N(A = {x|z^Tx=0})$ N 是NullSpace
(c)
对于$\forall x \in R^m$
有$x^TBAB^Tx = (x^TB)A(x^TB)^T$
因为A正定,所以 $ (B^Tx)^TA(B^Tx) \geq 0$
所以$BAB^T$PSD
- (a).
$$
\begin{align*}
\because A &= T\Lambda T^{-1} \
\therefore AT &= T\Lambda \
A[t^{(i)}] &= [t^{(i)}]\Lambda \
[At^{(0)},At^{(1)},\cdots,At^{(n-1)}] &= \begin{bmatrix} t^{(0)} & t^{(1)}& \cdots & t^{(n-1)}\end{bmatrix} \cdot \begin{bmatrix}
\lambda^{0} & 0 & 0 & \cdots & 0 \
0 & \lambda^{1} & 0 & \cdots & 0 \
0 & 0 & \lambda^{2} & \cdots & 0 \
\vdots & \vdots & \vdots & \ddots & \vdots \
0 & 0 & 0 & \cdots & \lambda^{n-1}
\end{bmatrix} \
\therefore At^{(i)}&=\lambda t{(i)}
\end{align*}
$$
(b).
$$
A=U\Lambda U^T \
AU = U\Lambda \
$$
然后和a相同
(c).
$\because$ A is PSD
$\therefore$ 对于A的特征矩阵 有$A = U\Lambda U^T \geq 0$
$U\Lambda U^T = [u^{(i)}]\Lambda [u^{(i)}]^T$
$= \lambda^{(i)}(t^{(i)})^2$
$\therefore \lambda^{(i)} \geq 0$